Dr Max Birch - PhD student

University Of Durham

Max Birch joined the Skyrmion Project in 2016 as a PhD student in the Centre for Materials Physics at Durham University, working under the supervision of Professor Peter Hatton.

During his PhD, Max used a range of experimental techniques including ac and dc magnetometry, resonant elastic x-ray scattering, resonant magnetic x-ray imaging, and x-ray holography to study magnetic objects such as skyrmions and magnetic bubbles in various materials including Cu2OSeO3, MnNiGa, and Fe3GeTe2. His work has led to publications with collaborators in and beyond the Skyrmion Project.

After graduation Max has worked as a post doc, first at the Max Planck Institute for Intelligent Systems and more recently at the RIKEN Center for Emergent Matter Science (CEMS).

Papers:

[1] A. Štefančič, S. H. Moody, T. J. Hicken, M. T. Birch, G. Balakrishnan, S. A. Barnett, M. Crisanti, J. S. O. Evans, S. J. R. Holt, K. J. A. Franke, P. D. Hatton, B. M. Huddart, M. R. Lees, F. L. Pratt, C. C. Tang, M. N. Wilson, F. Xiao, T. Lancaster, Origin of skyrmion lattice phase splitting in Zn-substituted Cu2OSeO3, Physical Review Materials 2, 111402 (2018).

[2] M. T. Birch, R. Takagi, S. Seki, M. N. Wilson, F. Kagawa, A. Štefančič, G. Balakrishnan, R. Fan, P. Steadman, C. J. Ottley, M. Crisanti, R. Cubitt, T. Lancaster, Y. Tokura, P. D. Hatton, Increased lifetime of metastable skyrmions by controlled doping, Physical Review B 100, 014425 (2019).

[3] K. J. A. Franke, P. R. Dean, M. C. Hatnean, M. T. Birch, D. D. Khalyavin, P. Manuel, T. Lancaster, G. Balakrishnan, P. D. Hatton, Investigating the magnetic ground state of the skyrmion host material Cu2OSeO3 using long-wavelength neutron diffraction, AIP Advances 9, 125228 (2019).

[4] B. M. Huddart, M. T. Birch, F. L. Pratt, S. J. Blundell, D. G. Porter, S. J. Clark, W. Wu, S. R. Julian, P. D. Hatton, T. Lancaster, Local magnetism, magnetic order and spin freezing in the ‘nonmetallic metal’ FeCrAs, Journal of Physics: Condensed Matter 31, 285803 (2019).

[5] J. C. Loudon, A. C. Twitchett-Harrison, D. Cortés-Ortuño, M. T. Birch, L. A. Turnbull, A. Štefančič, F. Y. Ogrin, E. O. Burgos-Parra, N. Bukin, A. Laurenson, H. Popescu, M. Beg, O. Hovorka, H. Fangohr, P. A. Midgley, G. Balakrishnan, P. D. Hatton, Do Images of Biskyrmions Show Type-II Bubbles?, Advanced Materials 31, 1806598 (2019).

[6] M. N. Wilson, M. Crisanti, C. Barker, A. Štefančič, J. S. White, M. T. Birch, G. Balakrishnan, R. Cubitt, P. D. Hatton, Measuring the formation energy barrier of skyrmions in zinc-substituted Cu2OSeO3, Physical Review B 99, 174421 (2019).

[7] M. T. Birch, D. Cortés-Ortuño, L. A. Turnbull, M. N. Wilson, F. Groß, N. Träger, A. Laurenson, N. Bukin, S. H. Moody, M. Weigand, G. Schütz, H. Popescu, R. Fan, P. Steadman, J. A. T. Verezhak, G. Balakrishnan, J. C. Loudon, A. C. Twitchett-Harrison, O. Hovorka, H. Fangohr, F. Y. Ogrin, J. Gräfe, P. D. Hatton, Real-space imaging of confined magnetic skyrmion tubes, Nature Communications 11, 1726 (2020).

[8] M. T. Birch, S. H. Moody, M. N. Wilson, M. Crisanti, O. Bewley, A. Štefančič, G. Balakrishnan, R. Fan, P. Steadman, D. Alba Venero, R. Cubitt, P. D. Hatton, Anisotropy-induced depinning in the Zn-substituted skyrmion host Cu2OSeO3, Physical Review B 102, 104424 (2020).

[8 ] M. Crisanti, M. T. Birch, M. N. Wilson, S. H. Moody, A. Štefančič, B. M. Huddart, S. Cabeza, G. Balakrishnan, P. D. Hatton, R. Cubitt, Position-dependent stability and lifetime of the skyrmion state in nickel-substituted Cu2OSeO3, Physical Review B 102, 224407 (2020).

[10] M. N. Wilson, M. T. Birch, A. Štefančič, A. C. Twitchett-Harrison, G. Balakrishnan, T. J. Hicken, R. Fan, P. Steadman, P. D. Hatton, Stability and metastability of skyrmions in thin lamellae of Cu2OSeO3, Physical Review Research 2, 013096 (2020).

[11] Luke A Turnbull, Max T Birch, Angus Laurenson, Nick Bukin, Erick O Burgos-Parra, Horia Popescu, Murray N Wilson, Aleš Stefančič, Geetha Balakrishnan, Feodor Y Ogrin, Peter D Hatton, Tilted X-ray holography of magnetic bubbles in MnNiGa lamellae, ACS Nano 15, 387-395 (2021).

[12] M. T. Birch, D. Cortés-Ortuño, N. D. Khanh, S. Seki, A. Štefančič, G. Balakrishnan, Y. Tokura, P. D. Hatton, Topological defect-mediated skyrmion annihilation in three dimensions, Communications Physics 4, 175 (2021).

[13] M. T. Birch, D. Cortés-Ortuño, K. Litzius, S. Wintz, F. Schulz, M. Weigand, A. Štefančič, D. A. Mayoh, G. Balakrishnan, P. D. Hatton, G. Schütz, Toggle-like current-induced Bloch point dynamics of 3D skyrmion strings in a room temperature nanowire, Nature Communications 13, 3630 (2022).

[14] M. T. Birch, L. Powalla, S. Wintz, O. Hovorka, K. Litzius, J. C. Loudon, L. A. Turnbull, V. Nehruji, K. Son, C. Bubeck, T. G. Rauch, M. Weigand, E. Goering, M. Burghard, G. Schütz, History-dependent domain and skyrmion formation in 2D van der Waals magnet Fe3GeTe2, Nature Communications 13, 3035 (2022).

[15] L. A. Turnbull, M. T. Littlehales, M. N. Wilson, M. T. Birch, H. Popescu, N. Jaouen, J. A. T. Verezhak, G. Balakrishnan, P. D. Hatton, X-ray holographic imaging of magnetic surface spirals in FeGe lamellae, Physical Review B 106, 064422 (2022).

[16] A. C. Twitchett-Harrison, J. C. Loudon, R. A. Pepper, M. T. Birch, H. Fangohr, P. A. Midgley, G. Balakrishnan, P. D. Hatton, Confinement of Skyrmions in Nanoscale FeGe Device-like Structures, ACS Applied Electronic Materials DOI 10.1021/acsaelm.2c00692 (2022).